INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Date:FN/AN	Time:	60 min	Full marks: 40	No. of students: 69
Autumn Semester Class Test 2,	2017	Dept:	Computer Science & Engineering	Sub No: CS60005
M.Tech (Core)			Sub Name: Foundations of	f Computing Science
		nstructions	: Answer all questions	

- 1. For each of the following statements indicate whether the statement is true or false and give a reason (counterexample or proof) supporting your answer.
 - (a) All problems in P are also in NP and in co-NP.
 - (b) If languages L_1 and L_2 are in P, then the language $L_3 = L_1 \cap L_2$ is also in P.
 - (c) Let problems $A \in P$, and $B \in NP$ -complete. If $A \leq_P B$, then A must be NP-Complete.
 - (d) Let problems $A \in P$, and $B \in NP$ -complete. If $B \leq_P A$ then it is true that P = NP.
 - (e) All problems in NP can be solved using a *deterministic* Turing machine in *polynomial space*.

[5×3 = 15 marks]

- 2. For each of the following problems, state if it is known to be in NP, co-NP, or more precisely in P.
 - (a) SAT: Given a Boolean formula in CNF, does the formula have a satisfying assignment of its variables?
 - (b) VALIDITY: Given a Boolean formula in CNF, is the formula valid?
 - (c) k-CUT: Does a given graph, G, have an edge cut of size less than k?
 - (d) Non-VALIDITY: Given a Boolean formula in CNF, does the formula have any assignment of its variables that makes the formula *False*?
 - (e) k-REGALLOC: Given a set of variables and time intervals in which each variable is in use ("*live*"), is there an allocation of variables to registers that uses less than k registers?

[5×2 = 10 marks]

3. Consider the SET-COVER problem defined as follows:

SET-COVER = { $\langle U, S, k \rangle$ | U is a finite set of numbers, S is a collection of sub-sets of U, there is a k-sized

cover of U from the collection S}

A cover $C \subseteq S$ is a collection of sub-sets whose union is U.

- (a) Prove that the SET-COVER problem is NP-Complete. Clearly indicate which problem is being reduced to which problem and clearly show the steps of the reduction, proving the reduction is in P. [Hint: Use the fact that VERTEX-COVER is NP-Complete]
- (b) Consider a variant of the SET-COVER problem: "Is the minimum sized set cover to cover all elements in U of size k?". What can you say about this problem?

[10+5 = 15 marks]